Hygroscopic properties of water-soluble matter and humic-like organics in atmospheric fine aerosol

نویسندگان

  • M. Gysel
  • E. Weingartner
  • S. Nyeki
  • D. Paulsen
  • U. Baltensperger
چکیده

Ambient continental-rural fine aerosol (K-puszta, Hungary, PM1.5) was sampled on quartz fibre filters in winter and summer 2001. Water-soluble matter (WSM) was extracted in MilliQ-water, and, in a second step, solid phase extraction was used to isolate the less hydrophilic fraction (ISOM) of the water-soluble organic matter (WSOM) from remaining inorganic salts and “most” hydrophilic organic matter (MHOM). This approach allowed ISOM, which constitutes the major fraction of WSOM, to be isolated from ambient aerosols and investigated in pure form. Hygroscopic properties of both WSM and ISOM extracts as well as of aquatic reference fulvic and humic acids were investigated using a Hygroscopicity Tandem Differential Mobility Analyser (H-TDMA). ISOM deliquesced between 30% and 60% relative humidity (RH), and hygroscopic growth factors at 90% RH ranged from 1.08 to 1.17. The hygroscopicity of ISOM is comparable to secondary organic aerosols obtained in smog chamber experiments, but lower than the hygroscopicity of highly soluble organic acids. The hygroscopic behaviour of investigated fulvic and humic acids had similarities to ISOM, but hygroscopic growth factors were slightly smaller and deliquescence was observed at higher RH (75– 85% and 85–95% RH for fulvic acid and humic acid, respectively). These differences probably originate from larger average molecular mass and lower solubility of fulvic and humic acids. Inorganic composition data, measured ISOM hygroscopicity, and a presumed value for the hygroscopicity of the small remaining MHOM fraction were used to predict hygroscopic growth of WSM extracts. Good agreement between model prediction and measured water uptake was observed with differences (by volume) ranging from +1% to −18%. While deliquescence properties of WSM extracts were mainly determined by the inorganic salts (42–53 wt % Correspondence to: E. Weingartner ([email protected]) of WSM), the WSOM accounted for a significant fraction of particulate water. At 90% RH, according to model predictions and measurements, about 80–62% of particulate water in the samples are associated with inorganic salts and about 20–38% with WSOM. The relative contributions of both distinguished WSOM fractions, ISOM and MHOM, remains uncertain since MHOM was not available in isolated form, but the results suggest that the less abundant MHOM is also important due to its presumably larger hygroscopicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hygroscopic properties of atmospheric organic matter

Hygroscopic properties of water-soluble matter and humic-like organics in atmospheric fine aerosol M. Gysel, E. Weingartner, S. Nyeki, D. Paulsen, U. Baltensperger, I. Galambos, and G. Kiss Laboratory of Atmospheric Chemistry, Paul Scherrer Institut, CH-5232 Villigen, Switzerland Department of Earth and Environmental Sciences, University of Veszprém, 8201 Veszprém, Hungary Air Chemistry Group o...

متن کامل

Applying the Condensation Particle Counter Battery (CPCB) to study the water-affinity of freshly-formed 2–9 nm particles in boreal forest

Measurements on the composition of nanometersized atmospheric particles are the key to understand which vapors participate in the secondary aerosol formation processes. Knowledge on these processes is crucial in assessing the climatic effects of secondary aerosol formation. We present data of >2 nm particle concentrations and their water-affinity measured with the Condensation Particle Counter ...

متن کامل

Hygroscopic properties of potassium chloride and its internal mixtures with organic compounds relevant to biomass burning aerosol particles

While water uptake of aerosols exerts considerable impacts on climate, the effects of aerosol composition and potential interactions between species on hygroscopicity of atmospheric particles have not been fully characterized. The water uptake behaviors of potassium chloride and its internal mixtures with water soluble organic compounds (WSOCs) related to biomass burning aerosols including oxal...

متن کامل

CCN Properties of Organic Aerosol Collected Below and within Marine Stratocumulus Clouds near Monterey, California

The composition of aerosol from cloud droplets differs from that below cloud. Its implications for the Cloud Condensation Nuclei (CCN) activity are the focus of this study. Water-soluble organic matter from below cloud, and cloud droplet residuals off the coast of Monterey, California were collected; offline chemical composition, CCN activity and surface tension measurements coupled with Köhler...

متن کامل

Phase transitions and hygroscopic growth of aerosol particles containing humic acid and mixtures of humic acid and ammonium sulphate

The phase transitions and hygroscopic growth of two humic acid aerosols (Aldrich sodium salt and Leonardite Standard (IHSS)) and their mixtures with ammonium sulphate have been investigated using a combination of two techniques, Fourier transform infra-red (FTIR) spectroscopy and tandem differential mobility analysis (TDMA). A growth factor of 1.16 at 85% relative humidity (RH ) was found for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004